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Characteristics of Metal—Insulator—
Semiconductor Coplanar Waveguides
for Monolithic Microwave Circuits

ROBERTO SORRENTINO, MEMBER, IEEE, GIORGIO LEUZZI, AND AGNES SILBERMANN

Abstract —Using a full-wave mode-matching technique, an extensive
analysis is.presented of the slow-wave factor, attenuation, and characteris-
tic ithped_ance of a metal-insulator-semiconductor coplanar waveguide
(MISCPW) as functions of the various structural parameters. Design
criteria are given for low-attenuation slow-wave propagation. By a proper
optimization of the structure, performances comparable with or even better
than those of alternative structures proposed in the literature aré theoreti-
cally predicted.

I. INTRODUCTION

R A ONOLITHIC MICROWAVE integrated circuits,

using both Si and GaAs technologies, have an in-
creasing impact in a number of applications because of
higher reliability, reproducibility, and potentially lower
costs [1]. It has already been pointed out that accurate
analysis techniques are required in order to reduce neces-
sity for trimming, which is more difficult than for hybrid
integrated circuits. Even in this case, however, full-wave
analyses are necessary to study propagation effects in
active devices [2]. Gigabit logic is dnother area where
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propagation effects have to be accounted for through the-
use of accurate theoreticdl analyses [3].

Slow-wave propagation in metal-insulator—semiconduc-
tor and Schottky-contact planar transmission lines has
been both experimentally observed and theoretically ex-
plained from different points of view [3]-[10]. The slow-
wave properties of such transmission lines can be used to
reduce the dimensions and cost of distributed elements to
realize delay lines or, when Schottky-contact lines are used,
for variable phase shifters, voltage-tunable filters, etc.

A drawback of these slow-wave structures is the loss
associated with the semiconducting layer. As an example,
the GaAs metal-insulator—semiconductor coplanar wave-
guide (MISCPW) experimented by Hasegawa and his co-
workers [6], [11] presented an attenuation greater than 1
dB/mm, with a slowing factor of about 30 at the frequency
of 1 GHz. Since losses and slow-wave effects depend on
the distribution of the electromagnetic field inside the
various regions of the structure, accurate analyses are
required to determine the most favorable conditions for the
practical use of such transmission lines.

An extensive study of the properties of MISCPW, based
on a full-wave technique, is presented in this paper. The
influence of the various structural parameters on the char-
acteristics of the structure is investigated, together with the
effect of the addition of a back conducting plane, which
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can be used for increasing the mechanical strength of the
circuits [12]. Conductor loss has not been included in the
analysis since it is generally negligible with respect to
semiconductor loss. The method of analysis is basically a
classical mode-matching technique [10]. For clarity of pre-
sentation, it is briefly described in the next section, but the
analytical details are omitted.

The computed results are presented and discussed in the
third section. They indicate that, by properly choosing its
parameters, the MISCPW is capable of slow-wave low-loss
propagation with characteristics comparable to or better
than those of alternative structures proposed for the same
type of applications [11].

II. METHOD OF ANALYSIS

Fig. 1 shows a sketch of the MISCPW. The analysis of
the structure can be reduced to that of a discontinuity
problem in a parallel-plate waveguide by inserting two
longitudinal electric or magnetic planes perpendicular to
the substrate, sufficiently apart from the slots. The effect of
these auxilliary planes is expected to be negligible since the
EM field is normally confined to the proximity of the slots.
Because of symmetry, a further magnetic longitudinal wall
can be placed at the center of the strip conductor for
analyzing the dominant even mode of the CPW. The
geometry of the reduced structure is shown in Fig. 2. As
viewed in the y-direction, it appears as a parallel-plate
waveguide (with plates of electric or magnetic type at x = 0
and x = a) which is loaded with three (lossy) slabs and a
metallic iris of finite thickness. The analysis can be per-
formed using a classical mode-matching technique. Assum-
ing a z-dependence as exp(— yz), the EM field is expanded
in each homogeneous section (i =1,2,---,6) in terms of
TE® and TM® modes of the parallel-plate waveguide;
the boundary conditions at infinity and at y=y, (i=
1,2,---,5), through the use of the orthogonality properties
of the modes, lead to a homogeneous system of equations
in the expansion coefficients. For nontrivial solutions the
coefficient matrix must be singular; this leads to a tran-
scendental equation in the complex propagation constant.

The system of equations can be manipulated so that the
only unknowns are the wave amplitudes in region 5. The
result is a small number of equations (typically less than
12), which requires little computing time. The roots of the
characteristic equation have been computed using the
ZEPLS program [13]. Once a value of y has been com-
puted, the EM field expansion coefficients are obtained as
the eigensolutions of the homogeneous system. From this,
any other quantity relevant to the mode of propagation can
be computed, such as field distribution, power density, and
characteristic impedance. With regard to the last quantity,
the following definition has been adopted:

Zy,=V’/(2P*)

where V is the voltage between the strip conductor and
ground, and P the complex power flowing through the
cross section of the structure.
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Fig 2. Reduced geometry of the MISCPW for analysis purposes.
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Fig. 3. Frequency behavior of the real part of the characteristic imped-
ance of Hasegawa’s MISCPW. Dots represent experiment [6].

III. RESULTS

In a preliminary work [10], the agreement was demon-
strated between the slow-wave factors and attenuations
computed by the present method and the measurements
performed by Hasegawa and coworkers [6], [11] on a
specific MISCPW on GaAs substrate. (With reference to
Fig. 1, the parameters of this structure were: s = (0.1 mm,
w=0.45 mm, ;=04 pm, £, =3.0 pm, €, =8.5, ¢, =¢; =
13.1, p=5.5 10"° @-m.) As shown in Fig. 3, a similar
agreement has been obtained with regard to the character-
istic impedance of the same structure. Such results suggest
the suitability of the above-described technique for an
extensive analysis of the properties of MISCPW. It should
be observed that the behavior of a MISCPW depends on a
number of quantities, namely: the frequency f, the width s
of the strip conductor, the distance s +2w between the
ground planes, the thickness § of the metallization, the
thicknesses ¢, (i ==1,2,3) of the substrate layers, the doping
level n,, or the resistivity p of the semiconducting layer.
€1, €4, €5 have not been accounted for, as we suppose the
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substrate material is given. It is clearly very difficult to
work with such a high number (eight) of parameters. We
have observed, however, that the thickness of the metalliza-
tion has a nonsubstantial or even negligible effect; more-
over, as long as the semiinsulating layer thickness is large,
as in the case previously analyzed, its influence is negligible
too. Since we are interested in singling out the conditions
for low-loss propagation, the resistivity of the semiconduct-
ing layer can be fixed at the value corresponding ap-
proximately to the minimum attenuation [10]. We have
found, in fact, that this value is slightly sensitive to the
structural parameters. Finally, because of the scaling prop-
erties of Maxwell’s equations, the results obtained for a
given structure at a frequency, say, of 1 GHz can be easily
extended to another structure with all linear dimensions
and semiconductor resistivity scaled by a factor of 1/k at
the frequency of k GHz.

We started our computations examining the MISCPW
experimented by Hasegawa [6]. As previously shown [10],
at f=1 GHz, this structure has a minimum theoretical
attenuation of about 2 dB/mm for a semiconductor resis-
tivity p of about 1.3 107° € -m, corresponding to a doping
level n, =6 10'7 cm ™3 (assuming a GaAs electron mobility
of 8000 cm?/Vs). For about the same value of p, the
slow-wave factor A /A, has a maximum of about 40. (A,
is the free-space wavelength and A, the MISCPW domi-
nant mode wavelength.)

A. Effect of Shape Parameters

Using such an optimum value of p, we have computed
the results shown in Fig. 4, where a and A, /A, are plotted
at the frequency of 1 GHz against the shape parameters

g=1/(t;+1,) r=s/(s+2w)

which characterize the substrate and metallization geome-
tries, respectively. The distance s + 2w between the ground
planes and the thickness #, +¢, of the insulating plus
semiconducting layers have been kept equal to those of
Hasegawa’s structure.

It is observed that, while the attenuation has a marked
dependence on both ¢ and r, the slow-wave factor is
slightly affected by the geometry of the metallization (),
as it is mainly influenced by the geometry of the substrate
(g). As the semiconducting layer thickness ¢, is reduced
from ~3 pm (¢=0.1) to ~0.3 um (g =0.9), the corre-
sponding slowing factor is reduced from values greater
than 40 to about 15. The attenuation, on the contrary,
decreases with ¢ down to a minimum for g ~ 0.75; as ¢
approaches unity, « has first a local maximum, which is
sharper with the smaller 7, then rapidly decreases to zero as
the semiconducting layer thickness becomes zero (g =1).

Very high slowing factors ( > 40) can be obtained for
low g’s, thus thicker semiconducting layers, but at the
price of higher attenuations; it can be observed that the
increased attenuation is generally not compensated for by
the possible reduction of the dimensions of the circuits due
to the higher value of A, /A . For example, for » = 0.2 and
q varying from 0.5 to 0.1, A, /A, increases by a factor of
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Fig. 5. Quality factor of the MISCPW of Fig, 4.

~ 2, while « increases by a factor of ~ 3. In order to get a
quantitative comparison between structures with different
slowing factors and different attenuations, we can use as a
quality factor the parameter

Q= (a?\g)*l.

The Q behavior computed from the data in Fig. 4 is shown
in Fig. 5. These figures indicate that, in order to obtain
lower attenuations with still considerable slowing factors, it
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Fig. 6. (a) Real part of the characteristic impedance of the MISCPW of
Fig. 4. (b) Imagmary part of the characteristic impedance of the
MISCPW of Fig. 4.

is convenient to use narrow strip conductors and proper
ratios between insulating and semiconducting layer thick-
nesses. In practical cases, however, the attenuation cannot
be reduced indefinitely by reducing the strip width, since
this will also have the effect of increasing the conductor
loss. For a given geometry of the metallization, highest Q
values are obtained for ¢ ranging from 0.6 (for r > 0.2) to
0.7 (for r < 0.2). An investigation of the a behavior versus
p for g=10.7, r = 0.1 has shown that the optimum resistiv-
ity for minimum attenuation is about the same as the
previous one.
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Fig. 7. Slow-wave factor, attenuation, and characteristic impedance as
functions of the semi-insulating layer thickness of MISCPW.

The behavior of the complex characteristic impedance as
a function of ¢ and r is shown in Fig. 6(a) and (b). The
behavior of the real part can be understood from a qualita-
tive point of view in terms of the characteristic impedance
of a quasi-TEM transmission line. The presence of the
semiconducting layer has the effect of confining the electric
field to the insulating layer, thus increasing the capacitance
per unit length of the line and decreasing the characteristic
impedance. Fig. 6(b) shows that the characteristic imped-
ance has a generally small imaginary part of inductive or
capacitive type depending on the geometry of the structure.
As the semiconducting layer becomes very thin (g ~1),
both the real and imaginary part of Z; undergo a very
sharp increase. In the limit for ¢ =1, i.e., when the semi-
conducting layer is absent, the real part assumes much
higher values, while the imaginary part becomes zero (not
shown in Fig. (6b)).

B. Effect of Semiinsulating Layer Thickness

The effect of the semi-insulating layer thickness 7 is
illustrated (g = 0.8, r =0.5) in Fig. 7 for a MISCPW with
and without a ground plane on the back of the substrate.
As t; decreases from 1.0 to 0.1 mm, the characteristics of
the standard MISCPW remain practically unchanged. In
the presence of a back conducting plane, on the contrary,
the characteristics of the MISCPW are modified for ¢,
smaller than 0.5 mm. The increased capacitance per unit
length, due to the additional metallic plane, is responsible
for the lower characteristic impedance. This figure indi-
cates that the adoption of a back ground plane could be
advantageous in reducing attenuation.

C. Effect of Distance Between Ground Planes

It has been already noted (see Fig. 4) that the attenua-
tion can be reduced, for a fixed distance s +2w between
the ground planes, by reducing the strip width s. Even
lower attenuatior's can be obtained by a simultaneous
reduction of s+2w and s. Fig. 8 shows the computed
characteristics versus s +2w of a MISCPW with g = 0.5,
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Fig 9. Slow-wave factor, attenuation, and characteristic impedance as
functions of the overall thickness of the insulating and semiconducting
layers.

r=0.8. (Since r is kept constant, s varies from 0.8 to 0.16
mm as w + 2s varies from 1.0 to 0.2 mm.) It is seen that the
attenuation of the structure can be reduced by about one
order of magnitude by reducing the dimensions of the
printed circuit; this has also the effect of increasing the Q
of the line, since the slow-wave factor undergoes a much
smaller reduction. A similar but not so marked effect is
obtained by increasing the overall thickness of the insulat-
ing and semiconducting layers, as shown in Fig. 9. This
way of reducing the attenuation, however, may be imprac-
tical because of technological problems.

We have then computed the characteristics of MISCPW
having a distance between ground planes reduced with
respect to the case of Fig. 4. As shown in Fig. 10, the
general behaviors of a and Ay /A, are about the same as
the previous ones, but the attenuation is considerably
reduced and attains a value lower than 0.1 dB/mm for
q = 0.8, r = 0.1. The slowing factor is also reduced, but to a
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Fig. 10. Same as Fig. 4, except for with s +2w = 0.5 mm and ¢, = 0.2
mm.

lesser extent, so that higher values (up to ~ 3.4) of Q are
obtained. In any case, except for very small values of the
semiconducting layer thickness (¢ ~ 1), slowings better than
10 are obtained. Fig. 11 shows the computed behavior of
the real part of the characteristic impedance, which is
slightly higher than in the previous case.

D. Comparison between Different Structures

Finally, Fig. 12 shows a comparison between the
frequency behaviors of various structures. The a curves
represent the computed values of attenuation and slow-
wave factor of the original structure tested by Hasegawa: a
varies from 2 dB/mm at f =1 GHz up to more than 20
dB/mm at f =10 GHz, while A, /A, varies from 30 to 11
correspondingly. The b curves represent the computed
characteristics of one of the structures of Fig. 10, with
r=10.1, g =0.8. In this case, the attenuation is reduced by
one order of magnitude, while the slowing factor is about
10 in the whole frequency range. Even lower attenuations
can be obtained, as shown by the third structure (¢ curves)
having s + 2w = (.25 mm. The slowing factor, though lower
than in the other case, may be still considered as satisfac-
tory. It is interesting to compare these results with those
relative to the cross-tie CPW, which has been proposed by
Seky and Hasegawa [11] as an alternative to the MISCPW.
The Q values of the four structures of Fig, 12 are, at f =1
GHz, 0.46 for a, 3.37 for b, 7.1 for ¢, 1.4 (CT-CPW).
Although conductor loss has not been included in the
analysis, these results suggest that the MISCPW is capable
of supporting slow-wave propagation with comparable or
even better attenuation characteristics with respect to the
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cross-tiec CPW, provided a suitable optimization of 1ts
parameters is made.

IV. CONCLUSIONS

A full-wave mode-matching technique has been used for
computing the characteristics (slow-wave factor, attenua-
tion, characteristic impedance) of MISCPW in terms of

415

various geometrical parameters and frequency. Theoretical
results indicate that low-loss propagation with useful slow-
wave factors can be obtained adopting proper shape fac-
tors and doping levels of the semiconducting layer. At-
tenuations lower than 0.1 dB/mm with slowing factors of
about 10 at f =1 GHz are theoretically predicted. These
results render the MISCPW competitive with respect to
alternative configurations [11] proposed for apphcauons in
the area of MMIC.
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An Efficient 200-290-GHz Frequency
Tripler Incorporating A Novel
Stripline Structure

JOHN W. ARCHER, SENIOR MEMBER, IEEE

Abstract —This paper describes a broadly tuneable frequency tripler
which can provide more than 2-mW output power at any frequency between
200 and 290 GHz. It is derived from an earlier narrow-band prototype
design, with the major improvements being the use of a new low-pass filter
desigit implemented using a novel suspended substrate stripline structure,
an optimized waveguide transformer, and a lower loss contacting output
backshort.

I. INTRODUCTION

N RECENT YEARS, varactor frequency multipliers

have become a practical source of local oscillator signals
in millimeter wavelength heterodyne receivers [1], [2]. The
achievement of optimum performance in a recently con-
structed multiple-mixer, cryogenic receiver for the 200-
350-GHz band [3] necessitated the development of a single
frequency tripler which could provide significant output
power in the 200-290-GHz frequency range. This paper
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describes the device developed to meet this requirement.
The design of the frequency multiplier was based on an
earlier prototype structure [1] which exhibited a signifi-
cantly narrower operating bandwidth. An improved strip-
line low-pass filter, an optimized waveguide transformer,
and a lower loss contacting backshort represent the major
changes made to the original harmonic generator design to
enable it to meet the new performance specifications. The
resulting device provides a significantly improved output
power bandwidth product when compared with previous
designs [2], [4].

II. GENERAL MOUNT DESCRIPTION

The harmonic generator employs a split block construc-
tion which has been successfully used in a number of
different multiplier designs [5]. The geometry used in this
frequency tripler is shown in Fig. 1. Power incident in the
full height input waveguide is fed to the varactor diode via
a tuneable transition and a seven-section suspended sub-
strate low-pass filter, which passes the pump frequency
with low loss, but is cut off for higher harmonics. The
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